Large deviation principle for a stochastic Allen–Cahn equation
Martin Heida () and
Matthias Röger ()
Additional contact information
Martin Heida: Weierstrass Institute for Applied Analysis and Stochastics
Matthias Röger: Technische Universität Dortmund
Journal of Theoretical Probability, 2018, vol. 31, issue 1, 364-401
Abstract:
Abstract The Allen–Cahn equation is a prototype model for phase separation processes, a fundamental example of a nonlinear spatial dynamic and an important approximation of a geometric evolution equation by a reaction–diffusion equation. Stochastic perturbations, especially in the case of additive noise, to the Allen–Cahn equation have attracted considerable attention. We consider here an alternative random perturbation determined by a Brownian flow of spatial diffeomorphism that was introduced by Röger and Weber (Stoch Partial Differ Equ Anal Comput 1(1):175–203, 2013). We first provide a large deviation principle for stochastic flows in spaces of functions that are Hölder continuous in time, which extends results by Budhiraja et al. (Ann Probab 36(4):1390–1420, 2008). From this result and a continuity argument we deduce a large deviation principle for the Allen–Cahn equation perturbed by a Brownian flow in the limit of small noise. Finally, we present two asymptotic reductions of the large deviation functional.
Keywords: Large deviations; Stochastic partial differential equations; Stochastic flows; Allen–Cahn equation; 60F10; 60H15; 35R60; 49J45 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10959-016-0711-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:31:y:2018:i:1:d:10.1007_s10959-016-0711-7
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-016-0711-7
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().