An Exponential Inequality for U-Statistics Under Mixing Conditions
Fang Han ()
Additional contact information
Fang Han: University of Washington
Journal of Theoretical Probability, 2018, vol. 31, issue 1, 556-578
Abstract:
Abstract The family of U-statistics plays a fundamental role in statistics. This paper proves a novel exponential inequality for U-statistics under the time series setting. Explicit mixing conditions are given for guaranteeing fast convergence, the bound proves to be analogous to the one under independence, and extension to non-stationary time series is straightforward. The proof relies on a novel decomposition of U-statistics via exploiting the temporal correlatedness structure. Such results are of interest in many fields where high-dimensional time series data are present. In particular, applications to high-dimensional time series inference are discussed.
Keywords: U-statistics; Mixing conditions; Exponential inequality; High-dimensional time series inference; 60E15; 60F10 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10959-016-0722-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:31:y:2018:i:1:d:10.1007_s10959-016-0722-4
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-016-0722-4
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().