EconPapers    
Economics at your fingertips  
 

The Defect of Random Hyperspherical Harmonics

Maurizia Rossi ()
Additional contact information
Maurizia Rossi: Université Paris Descartes

Journal of Theoretical Probability, 2019, vol. 32, issue 4, 2135-2165

Abstract: Abstract Random hyperspherical harmonics are Gaussian Laplace eigenfunctions on the unit d-sphere ( $$d\ge 2$$ d ≥ 2 ). We investigate the distribution of their defect, i.e., the difference between the measure of positive and negative regions. Marinucci and Wigman studied the two-dimensional case giving the asymptotic variance (Marinucci and Wigman in J Phys A Math Theor 44:355206, 2011) and a central limit theorem (Marinucci and Wigman in Commun Math Phys 327(3):849–872, 2014), both in the high-energy limit. Our main results concern asymptotics for the defect variance and quantitative CLTs in Wasserstein distance, in any dimension. The proofs are based on Wiener–Itô chaos expansions for the defect, a careful use of asymptotic results for all order moments of Gegenbauer polynomials and Stein–Malliavin approximation techniques by Nourdin and Peccati (in Prob Theory Relat Fields 145(1–2):75–118, 2009; Normal approximations with Malliavin calculus. Cambridge Tracts in Mathematics, vol 192, Cambridge University Press, Cambridge, 2012). Our argument requires some novel technical results of independent interest that involve integrals of the product of three hyperspherical harmonics.

Keywords: Defect; Gaussian eigenfunctions; High-energy asymptotics; Quantitative central limit theorem; Integrals of hyperspherical harmonics; 60G60; 42C10; 60D05; 60B10; 43A75 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10959-018-0849-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:32:y:2019:i:4:d:10.1007_s10959-018-0849-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-018-0849-6

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:32:y:2019:i:4:d:10.1007_s10959-018-0849-6