Wasserstein and Kolmogorov Error Bounds for Variance-Gamma Approximation via Stein’s Method I
Robert E. Gaunt ()
Additional contact information
Robert E. Gaunt: The University of Manchester
Journal of Theoretical Probability, 2020, vol. 33, issue 1, 465-505
Abstract:
Abstract The variance-gamma (VG) distributions form a four-parameter family that includes as special and limiting cases the normal, gamma and Laplace distributions. Some of the numerous applications include financial modelling and approximation on Wiener space. Recently, Stein’s method has been extended to the VG distribution. However, technical difficulties have meant that bounds for distributional approximations have only been given for smooth test functions (typically requiring at least two derivatives for the test function). In this paper, which deals with symmetric variance-gamma (SVG) distributions, and a companion paper (Gaunt 2018), which deals with the whole family of VG distributions, we address this issue. In this paper, we obtain new bounds for the derivatives of the solution of the SVG Stein equation, which allow for approximations to be made in the Kolmogorov and Wasserstein metrics, and also introduce a distributional transformation that is natural in the context of SVG approximation. We apply this theory to obtain Wasserstein or Kolmogorov error bounds for SVG approximation in four settings: comparison of VG and SVG distributions, SVG approximation of functionals of isonormal Gaussian processes, SVG approximation of a statistic for binary sequence comparison, and Laplace approximation of a random sum of independent mean zero random variables.
Keywords: Stein’s method; Variance-gamma approximation; Distributional transformation; Rate of convergence; Primary 60F05; 62E17 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10959-018-0867-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:33:y:2020:i:1:d:10.1007_s10959-018-0867-4
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-018-0867-4
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().