Self-Decomposable Laws from Continuous Branching Processes
Anthony G. Pakes ()
Additional contact information
Anthony G. Pakes: University of Western Australia
Journal of Theoretical Probability, 2020, vol. 33, issue 1, 361-395
Abstract:
Abstract The martingale limit law of the supercritical continuous time and state branching process either is compound Poisson or self-decomposable. This paper explores some general aspects of the latter case. A fundamental question for the latter case is whether the cumulant function of the martingale limit is a Thorin–Bernstein function. We make some progress by showing that it is special Bernstein if the cumulant function of the generating subordinator is special Bernstein. A specific parametric family of martingale limit cumulant functions is shown to be Thorin–Bernstein. Two complementary proofs of this fact are offered, one of which entirely avoids complex variable issues. The principal Lambert W-function is a boundary case of this family, thereby giving a new proof that it too is Thorin–Bernstein. Tail estimates of the distribution functions for this family are derived along with the right-hand tail and integral representations of their Lévy densities.
Keywords: Continuous state branching; Subordinators; Self-decomposable laws; Special and Thorin–Bernstein functions; Lambert W-function; Stable laws; Convolution equivalence; Primary 60E07; 60J80; Secondary 44A10; 60E10; 62E10 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10959-019-00886-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:33:y:2020:i:1:d:10.1007_s10959-019-00886-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-019-00886-0
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().