Moment Bounds for Large Autocovariance Matrices Under Dependence
Fang Han () and
Yicheng Li ()
Additional contact information
Fang Han: University of Washington
Yicheng Li: University of Washington
Journal of Theoretical Probability, 2020, vol. 33, issue 3, 1445-1492
Abstract:
Abstract The goal of this paper is to obtain expectation bounds for the deviation of large sample autocovariance matrices from their means under weak data dependence. While the accuracy of covariance matrix estimation corresponding to independent data has been well understood, much less is known in the case of dependent data. We make a step toward filling this gap and establish deviation bounds that depend only on the parameters controlling the “intrinsic dimension” of the data up to some logarithmic terms. Our results have immediate impacts on high-dimensional time-series analysis, and we apply them to high-dimensional linear VAR(d) model, vector-valued ARCH model, and a model used in Banna et al. (Random Matrices Theory Appl 5(2):1650006, 2016).
Keywords: Autocovariance matrix; Effective rank; Weak dependence; $$\tau $$ τ -mixing; 60E15; 60F10 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10959-019-00922-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:33:y:2020:i:3:d:10.1007_s10959-019-00922-z
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-019-00922-z
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().