EconPapers    
Economics at your fingertips  
 

Resolvent Decomposition Theorems and Their Application in Denumerable Markov Processes with Instantaneous States

Anyue Chen ()
Additional contact information
Anyue Chen: Southern University of Science and Technology

Journal of Theoretical Probability, 2020, vol. 33, issue 4, 2089-2118

Abstract: Abstract The basic aim of this paper is to provide a fundamental tool, the resolvent decomposition theorem, in the construction theory of denumerable Markov processes. We present a detailed analytic proof of this extremely useful tool and explain its clear probabilistic interpretation. We then apply this tool to investigate the basic problems of existence and uniqueness criteria for denumerable Markov processes with instantaneous states to which few results have been obtained even until now. Although the complete answers regarding these existence and uniqueness criteria will be given in a subsequent paper, we shall, in this paper, present part solutions of these very important problems that are closely linked with the subtle Williams S and N conditions.

Keywords: Denumerable Markov processes; Transition functions; Resolvents; Taboo probabilities; Existence; Uniqueness; Primary 60J27; Secondary 60J35 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-019-00941-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:33:y:2020:i:4:d:10.1007_s10959-019-00941-w

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-019-00941-w

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:33:y:2020:i:4:d:10.1007_s10959-019-00941-w