EconPapers    
Economics at your fingertips  
 

Gibbsian Representation for Point Processes via Hyperedge Potentials

Benedikt Jahnel () and Christof Külske ()
Additional contact information
Benedikt Jahnel: Weierstrass Institute Berlin
Christof Külske: Ruhr-Universität Bochum

Journal of Theoretical Probability, 2021, vol. 34, issue 1, 391-417

Abstract: Abstract We consider marked point processes on the d-dimensional Euclidean space, defined in terms of a quasilocal specification based on marked Poisson point processes. We construct absolutely summable Hamiltonians in terms of hyperedge potentials in the sense of Georgii et al. (Probab Theory Relat Fields 153(3–4):643–670, 2012), which are useful in models of stochastic geometry. These potentials allow for weak non-localities and are a natural generalization of the usual physical multi-body potentials, which are strictly local. Our proof relies on regrouping arguments, which use the possibility of controlled non-localities in the class of hyperedge potentials. As an illustration, we also provide such representations for the Widom–Rowlinson model under independent spin-flip time evolution. With this work, we aim to draw a link between the abstract theory of point processes in infinite volume, the study of measures under transformations and statistical mechanics of systems of point particles.

Keywords: Gibbsian point processes; Kozlov theorem; Sullivan theorem; Hyperedge potentials; Widom–Rowlinson model; 82B21; 60K35 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-019-00960-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:34:y:2021:i:1:d:10.1007_s10959-019-00960-7

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-019-00960-7

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:34:y:2021:i:1:d:10.1007_s10959-019-00960-7