EconPapers    
Economics at your fingertips  
 

Hörmander’s Hypoelliptic Theorem for Nonlocal Operators

Zimo Hao (), Xuhui Peng () and Xicheng Zhang ()
Additional contact information
Zimo Hao: Wuhan University
Xuhui Peng: Hunan Normal University
Xicheng Zhang: Wuhan University

Journal of Theoretical Probability, 2021, vol. 34, issue 4, 1870-1916

Abstract: Abstract In this paper we show the Hörmander hypoelliptic theorem for nonlocal operators by a purely probabilistic method: the Malliavin calculus. Roughly speaking, under general Hörmander’s Lie bracket conditions, we show the regularization effect of discontinuous Lévy noises for possibly degenerate stochastic differential equations with jumps. To treat the large jumps, we use the perturbation argument together with interpolation techniques and some short time asymptotic estimates of the semigroup. As an application, we show the existence of fundamental solutions for operator $$\partial _t-{{\mathscr {K}}}$$ ∂ t - K , where $${{\mathscr {K}}}$$ K is the following nonlocal kinetic operator: $$\begin{aligned} {{\mathscr {K}}}f(x,\mathrm{v})= & {} \mathrm{p.v.}\int _{{{\mathbb {R}}}^d}(f(x,\mathrm{v}+w)-f(x,\mathrm{v}))\frac{\kappa (x,\mathrm{v},w)}{|w|^{d+\alpha }}\, {\mathord {\mathrm{d}}}w \\&+\mathrm{v}\cdot \nabla _x f(x,\mathrm{v})+b(x,\mathrm{v})\cdot \nabla _\mathrm{v} f(x,\mathrm{v}). \end{aligned}$$ K f ( x , v ) = p . v . ∫ R d ( f ( x , v + w ) - f ( x , v ) ) κ ( x , v , w ) | w | d + α d w + v · ∇ x f ( x , v ) + b ( x , v ) · ∇ v f ( x , v ) . Here $$\kappa _0^{-1}\leqslant \kappa (x,\mathrm{v},w)\leqslant \kappa _0$$ κ 0 - 1 ⩽ κ ( x , v , w ) ⩽ κ 0 belongs to $$C^\infty _b({{\mathbb {R}}}^{3d})$$ C b ∞ ( R 3 d ) and is symmetric in w, p.v. stands for the Cauchy principal value, and $$b\in C^\infty _b({{\mathbb {R}}}^{2d};{{\mathbb {R}}}^d)$$ b ∈ C b ∞ ( R 2 d ; R d ) .

Keywords: Hörmander’s conditions; Malliavin calculus; Hypoellipticity; Nonlocal operators; 60H07; 60H10; 60H30 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10959-020-01020-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:34:y:2021:i:4:d:10.1007_s10959-020-01020-1

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-020-01020-1

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:34:y:2021:i:4:d:10.1007_s10959-020-01020-1