Self-Standardized Central Limit Theorems for Trimmed Lévy Processes
David M. Mason ()
Additional contact information
David M. Mason: University of Delaware
Journal of Theoretical Probability, 2021, vol. 34, issue 4, 2117-2144
Abstract:
Abstract We prove under general conditions that a trimmed subordinator satisfies a self-standardized central limit theorem (SSCLT). Our basic tool is a powerful distributional approximation result of Zaitsev (Probab Theory Relat Fields 74:535–566, 1987). Among other results, we obtain as special cases of our subordinator result the recent SSCLTs of Ipsen et al. (Stoch Process Appl 130:2228–2249, 2020) for trimmed subordinators and a trimmed subordinator analog of a central limit theorem of Csörgő et al. (Probab Theory Relat Fields 72:1–16, 1986) for intermediate trimmed sums in the domain of attraction of a stable law. We then use our methods to prove a similar theorem for general Lévy processes.
Keywords: Trimmed Lévy processes; Trimmed subordinators; Distributional approximation; 60F05; 60G51 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-020-01021-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:34:y:2021:i:4:d:10.1007_s10959-020-01021-0
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-020-01021-0
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().