Large Deviation Properties of the Empirical Measure of a Metastable Small Noise Diffusion
Paul Dupuis and
Guo-Jhen Wu ()
Additional contact information
Paul Dupuis: Brown University
Guo-Jhen Wu: KTH Royal Institute of Technology
Journal of Theoretical Probability, 2022, vol. 35, issue 2, 1049-1136
Abstract:
Abstract The aim of this paper is to develop tractable large deviation approximations for the empirical measure of a small noise diffusion. The starting point is the Freidlin–Wentzell theory, which shows how to approximate via a large deviation principle the invariant distribution of such a diffusion. The rate function of the invariant measure is formulated in terms of quasipotentials, quantities that measure the difficulty of a transition from the neighborhood of one metastable set to another. The theory provides an intuitive and useful approximation for the invariant measure, and along the way many useful related results (e.g., transition rates between metastable states) are also developed. With the specific goal of design of Monte Carlo schemes in mind, we prove large deviation limits for integrals with respect to the empirical measure, where the process is considered over a time interval whose length grows as the noise decreases to zero. In particular, we show how the first and second moments of these integrals can be expressed in terms of quasipotentials. When the dynamics of the process depend on parameters, these approximations can be used for algorithm design, and applications of this sort will appear elsewhere. The use of a small noise limit is well motivated, since in this limit good sampling of the state space becomes most challenging. The proof exploits a regenerative structure, and a number of new techniques are needed to turn large deviation estimates over a regenerative cycle into estimates for the empirical measure and its moments.
Keywords: Large deviations; Freidlin–Wentzell theory; Small noise diffusion; Empirical measure; Quasipotential; Monte Carlo method; 60F10; 60J60; 65C05; 37A50; 60K10 (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-020-01072-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:35:y:2022:i:2:d:10.1007_s10959-020-01072-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-020-01072-3
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().