Generating M-Indeterminate Probability Densities by Way of Quantum Mechanics
Rafael Sala Mayato,
Patrick Loughlin and
Leon Cohen ()
Additional contact information
Rafael Sala Mayato: Universidad de La Laguna
Patrick Loughlin: University of Pittsburgh
Leon Cohen: Hunter College of the City University of New York
Journal of Theoretical Probability, 2022, vol. 35, issue 3, 1537-1555
Abstract:
Abstract Probability densities that are not uniquely determined by their moments are said to be “moment-indeterminate,” or “M-indeterminate.” Determining whether or not a density is M-indeterminate, or how to generate an M-indeterminate density, is a challenging problem with a long history. Quantum mechanics is inherently probabilistic, yet the way in which probability densities are obtained is dramatically different in comparison with standard probability theory, involving complex wave functions and operators, among other aspects. Nevertheless, the end results are standard probabilistic quantities, such as expectation values, moments and probability density functions. We show that the quantum mechanics procedure to obtain densities leads to a simple method to generate an infinite number of M-indeterminate densities. Different self-adjoint operators can lead to new classes of M-indeterminate densities. Depending on the operator, the method can produce densities that are of the Stieltjes class or new formulations that are not of the Stieltjes class. As such, the method complements and extends existing approaches and opens up new avenues for further development. The method applies to continuous and discrete probability densities. A number of examples are given.
Keywords: M-indeterminate probability densities; Moments; Quantum mechanics; Stieltjes class; 44A60; 47N30; 60E05 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-021-01121-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:35:y:2022:i:3:d:10.1007_s10959-021-01121-5
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-021-01121-5
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().