EconPapers    
Economics at your fingertips  
 

Generalized Fractional Counting Process

K. K. Kataria () and M. Khandakar ()
Additional contact information
K. K. Kataria: Department of Mathematics, Indian Institute of Technology Bhilai
M. Khandakar: Department of Mathematics, Indian Institute of Technology Bhilai

Journal of Theoretical Probability, 2022, vol. 35, issue 4, 2784-2805

Abstract: Abstract In this paper, we obtain additional results for a fractional counting process introduced and studied by Di Crescenzo et al. [8]. For convenience, we call it the generalized fractional counting process (GFCP). It is shown that the one-dimensional distributions of the GFCP are not infinitely divisible. Its covariance structure is studied, using which its long-range dependence property is established. It is shown that the increments of GFCP exhibit the short-range dependence property. Also, we prove that the GFCP is a scaling limit of some continuous time random walk. A particular case of the GFCP, namely, the generalized counting process (GCP), is discussed for which we obtain a limiting result and a martingale result and establish a recurrence relation for its probability mass function. We have shown that many known counting processes such as the Poisson process of order k, the Pólya-Aeppli process of order k, the negative binomial process and their fractional versions etc., are other special cases of the GFCP. An application of the GCP to risk theory is discussed.

Keywords: Poisson process of order k; Fractional Pólya-Aeppli process; LRD property; SRD property; 60G55; 60G22; 91B30 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10959-022-01160-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:35:y:2022:i:4:d:10.1007_s10959-022-01160-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-022-01160-6

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:35:y:2022:i:4:d:10.1007_s10959-022-01160-6