Some Bounds for the Expectations of Functions on Order Statistics and Their Applications
Arvydas Astrauskas ()
Additional contact information
Arvydas Astrauskas: Vilnius University
Journal of Theoretical Probability, 2023, vol. 36, issue 2, 1116-1147
Abstract:
Abstract Let $$X_{1, N}\geqslant X_{2, N} \geqslant \cdots \geqslant X_{N , N}$$ X 1 , N ⩾ X 2 , N ⩾ ⋯ ⩾ X N , N be the order statistics of independent identically distributed random variables $$X_k$$ X k ( $$1\leqslant k \leqslant N$$ 1 ⩽ k ⩽ N ). For fixed natural K and a nonnegative bounded deterministic function $$G_N$$ G N on $$\mathbb {R}^N$$ R N satisfying mild conditions of Lebesgue’s measurability, we obtain the following bound for the expectations: $$\begin{aligned}&\mathbb {E}G_N \big (X_{1,N},X_{2,N},\ldots ,X_{K,N}, X_{K+1,N},\ldots , X_{N,N} \big ) \\&\quad \leqslant T \cdot \mathbb {E}G_N \big (X_{1,N}^{(1)},X_{1,N}^{(2)},\ldots ,X_{1,N}^{(K)}, X _{K+1,N},\ldots , X _{N,N} \big ) +\vartheta _T \end{aligned}$$ E G N ( X 1 , N , X 2 , N , … , X K , N , X K + 1 , N , … , X N , N ) ⩽ T · E G N ( X 1 , N ( 1 ) , X 1 , N ( 2 ) , … , X 1 , N ( K ) , X K + 1 , N , … , X N , N ) + ϑ T for any $$T \geqslant T_0(K)$$ T ⩾ T 0 ( K ) and any $$N \geqslant N_0(T)$$ N ⩾ N 0 ( T ) large enough; here constants $$\vartheta _T> 0$$ ϑ T > 0 tend to zero as T approaches infinity; $$X _{1,N}^{(i)}$$ X 1 , N ( i ) ( $$1\leqslant i\leqslant K$$ 1 ⩽ i ⩽ K ) are mutually independent copies of the maximum $$X_{1,N}$$ X 1 , N ; and each $$X _{1,N}^{(i)}$$ X 1 , N ( i ) is also independent of the sample $$\{X_k\}_{1 \leqslant k\leqslant N}$$ { X k } 1 ⩽ k ⩽ N . With $$G_N$$ G N as relevant indicator functions and $$N \rightarrow \infty $$ N → ∞ , these bounds are applied to study $$\mathrm{o}$$ o - and $$\mathrm{O}$$ O -type asymptotic properties of the following functions on order statistics: (Appl-1) the numbers of observations near the Kth extremes $$X_{K,N}$$ X K , N and (Appl-2) the sums of negative powers of spacings $$X_{K,N}-X_{i,N}$$ X K , N - X i , N ( $$K+1 \leqslant i \leqslant N$$ K + 1 ⩽ i ⩽ N ).
Keywords: Functions on order statistics; Extremes; Expectation; Approximation of multidimensional integrals; Number of near-extremes; Weak law of large numbers; 60E15; 60G70; 60F05; 60F99; 62G30; 28A25; 41A45 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-022-01179-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01179-9
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-022-01179-9
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().