EconPapers    
Economics at your fingertips  
 

Weighted Davis Inequalities for Martingale Square Functions

Dennis Wollgast and Pavel Zorin-Kranich ()
Additional contact information
Dennis Wollgast: University of Bonn
Pavel Zorin-Kranich: University of Bonn

Journal of Theoretical Probability, 2023, vol. 36, issue 3, 1520-1533

Abstract: Abstract For a Hilbert space-valued martingale $$(f_{n})$$ ( f n ) and an adapted sequence of positive random variables $$(w_{n})$$ ( w n ) , we show the weighted Davis-type inequality $$\begin{aligned} {\mathbb {E}}\left( {|}f_{0}{|} w_{0} + \frac{1}{4} \sum _{n=1}^{N} \frac{{|}df_{n}{|}^{2}}{f^{*}_{n}} w_{n} \right) \le {\mathbb {E}}( f^{*}_{N} w^{*}_{N}). \end{aligned}$$ E | f 0 | w 0 + 1 4 ∑ n = 1 N | d f n | 2 f n ∗ w n ≤ E ( f N ∗ w N ∗ ) . More generally, for a martingale $$(f_{n})$$ ( f n ) with values in a $$(q,\delta )$$ ( q , δ ) -uniformly convex Banach space, we show that $$\begin{aligned} {\mathbb {E}}\left( {|}f_{0}{|} w_{0} + \delta \sum _{n=1}^{\infty } \frac{{|}df_{n}{|}^{q}}{(f^{*}_{n})^{q-1}} w_{n} \right) \le C_{q} {\mathbb {E}}( f^{*} w^{*}). \end{aligned}$$ E | f 0 | w 0 + δ ∑ n = 1 ∞ | d f n | q ( f n ∗ ) q - 1 w n ≤ C q E ( f ∗ w ∗ ) . These inequalities unify several results about the martingale square function.

Keywords: Burkholder-Davis-Gundy inequalities; Muckenhoupt weight; Uniformly convex Banach space; Primary 60L20; Secondary 60G44; 60G46; 60H05 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-022-01204-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:36:y:2023:i:3:d:10.1007_s10959-022-01204-x

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-022-01204-x

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:36:y:2023:i:3:d:10.1007_s10959-022-01204-x