EconPapers    
Economics at your fingertips  
 

Green Function for an Asymptotically Stable Random Walk in a Half Space

Denis Denisov () and Vitali Wachtel ()
Additional contact information
Denis Denisov: University of Manchester
Vitali Wachtel: Bielefeld University

Journal of Theoretical Probability, 2024, vol. 37, issue 2, 1745-1786

Abstract: Abstract We consider an asymptotically stable multidimensional random walk $$S(n)=(S_1(n),\ldots , S_d(n) )$$ S ( n ) = ( S 1 ( n ) , … , S d ( n ) ) . For every vector $$x=(x_1\ldots ,x_d)$$ x = ( x 1 … , x d ) with $$x_1\ge 0$$ x 1 ≥ 0 , let $$\tau _x:=\min \{n>0: x_{1}+S_1(n)\le 0\}$$ τ x : = min { n > 0 : x 1 + S 1 ( n ) ≤ 0 } be the first time the random walk $$x+S(n)$$ x + S ( n ) leaves the upper half space. We obtain the asymptotics of $$p_n(x,y):= {\textbf{P}}(x+S(n) \in y+\Delta , \tau _x>n)$$ p n ( x , y ) : = P ( x + S ( n ) ∈ y + Δ , τ x > n ) as n tends to infinity, where $$\Delta $$ Δ is a fixed cube. From that, we obtain the local asymptotics for the Green function $$G(x,y):=\sum _n p_n(x,y)$$ G ( x , y ) : = ∑ n p n ( x , y ) , as $$|y |$$ | y | and/or $$|x |$$ | x | tend to infinity.

Keywords: Random walk; Exit time; Harmonic function; Conditioned process; Primary 60G50; Secondary 60G40; 60J45; 60F17 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-023-01283-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01283-4

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-023-01283-4

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01283-4