EconPapers    
Economics at your fingertips  
 

Multivariate Random Fields Evolving Temporally Over Hyperbolic Spaces

Anatoliy Malyarenko () and Emilio Porcu ()
Additional contact information
Anatoliy Malyarenko: Mälardalen University
Emilio Porcu: Research Center at Khalifa University

Journal of Theoretical Probability, 2024, vol. 37, issue 2, 975-1000

Abstract: Abstract Gaussian random fields are completely characterised by their mean value and covariance function. Random fields on hyperbolic spaces have been studied to a limited extent only, namely for the case of scalar-valued fields that are not evolving over time. This paper challenges the problem of the second-order characteristics of multivariate (vector-valued) random fields that evolve temporally over hyperbolic spaces. Specifically, we characterise the continuous space–time covariance functions that are isotropic (radially symmetric) over space (the hyperbolic space) and stationary over time (the real line). Our finding is the analogue of recent findings that have been shown for the case where the space is either the n-dimensional sphere or more generally a two-point homogeneous space. Our main result can be read as a spectral representation theorem, and we also detail the main result for the subcase of covariance functions having a spectrum that is absolutely continuous with respect to the Lebesgue measure (technical details are reported below).

Keywords: Covariance functions; Hyperbolic spaces; Multivariate random fields; Space–time; 60G60; 51M10 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-024-01316-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-024-01316-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-024-01316-6

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-024-01316-6