EconPapers    
Economics at your fingertips  
 

A Robust $$\alpha $$ α -Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition

Lianzi Jiang () and Gechun Liang ()
Additional contact information
Lianzi Jiang: Shandong University of Science and Technology
Gechun Liang: The University of Warwick

Journal of Theoretical Probability, 2024, vol. 37, issue 3, 2394-2424

Abstract: Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$\alpha $$ α -stable central limit theorem under sublinear expectation. Specifically, for $$\alpha \in (0,1]$$ α ∈ ( 0 , 1 ] , we prove that the normalized sums of i.i.d. non-integrable random variables $$\big \{n^{-\frac{1}{\alpha }}\sum _{i=1}^{n}Z_{i}\big \}_{n=1}^{\infty }$$ { n - 1 α ∑ i = 1 n Z i } n = 1 ∞ converge in law to $${\tilde{\zeta }}_{1}$$ ζ ~ 1 , where $$({\tilde{\zeta }}_{t})_{t\in [0,1]}$$ ( ζ ~ t ) t ∈ [ 0 , 1 ] is a multidimensional nonlinear symmetric $$\alpha $$ α -stable process with jump uncertainty set $${\mathcal {L}}$$ L . The limiting $$\alpha $$ α -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$\begin{aligned} \left\{ \begin{array}{l} \displaystyle \partial _{t}u(t,x)-\sup \limits _{F_{\mu }\in {\mathcal {L}}}\left\{ \int _{{\mathbb {R}}^{d}}\delta _{\lambda }^{\alpha }u(t,x)F_{\mu }(d\lambda )\right\} =0,\\ \displaystyle u(0,x)=\phi (x),\quad \forall (t,x)\in [0,1]\times {\mathbb {R}}^{d}, \end{array} \right. \end{aligned}$$ ∂ t u ( t , x ) - sup F μ ∈ L ∫ R d δ λ α u ( t , x ) F μ ( d λ ) = 0 , u ( 0 , x ) = ϕ ( x ) , ∀ ( t , x ) ∈ [ 0 , 1 ] × R d , where $$\begin{aligned} \delta _{\lambda }^{\alpha }u(t,x):=\left\{ \begin{array}{ll} u(t,x+\lambda )-u(t,x)-\langle D_{x}u(t,x),\lambda \mathbbm {1}_{\{|\lambda |\le 1\}}\rangle , &{}\quad \alpha =1,\\ u(t,x+\lambda )-u(t,x), &{}\quad \alpha \in (0,1). \end{array} \right. \end{aligned}$$ δ λ α u ( t , x ) : = u ( t , x + λ ) - u ( t , x ) - ⟨ D x u ( t , x ) , λ 1 { | λ | ≤ 1 } ⟩ , α = 1 , u ( t , x + λ ) - u ( t , x ) , α ∈ ( 0 , 1 ) . The approach used in this study involves the utilization of several tools, including a weak convergence approach to obtain the limiting process, a Lévy–Khintchine representation of the nonlinear $$\alpha $$ α -stable process and a truncation technique to estimate the corresponding $$\alpha $$ α -stable Lévy measures. In addition, the article presents a probabilistic method for proving the existence of a solution to the above fully nonlinear PIDE.

Keywords: Robust stable central limit theorem; Partial integro-differential equation; $$\alpha $$ α -stable distribution; Sublinear expectation; 60F05; 60G65; 45K05 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10959-023-01298-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01298-x

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959

DOI: 10.1007/s10959-023-01298-x

Access Statistics for this article

Journal of Theoretical Probability is currently edited by Andrea Monica

More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01298-x