Urns with Multiple Drawings and Graph-Based Interaction
Yogesh Dahiya () and
Neeraja Sahasrabudhe ()
Additional contact information
Yogesh Dahiya: Indian Institute of Science Education and Research
Neeraja Sahasrabudhe: Indian Institute of Science Education and Research
Journal of Theoretical Probability, 2024, vol. 37, issue 4, 3283-3316
Abstract:
Abstract Consider a finite undirected graph and place an urn with balls of two colours at each vertex. At every discrete time step, for each urn, a fixed number of balls are drawn from that same urn with probability p and from a randomly chosen neighbour of that urn with probability $$1-p$$ 1 - p . Based on what is drawn, the urns then reinforce themselves or their neighbours. For every ball of a given colour in the sample, in case of Pólya-type reinforcement, a constant multiple of balls of that colour is added while in case of Friedman-type reinforcement, balls of the other colour are reinforced. These different choices for reinforcement give rise to multiple models. In this paper, we study the convergence of the fraction of balls of either colour across urns for all of these models. We show that in most cases the urns synchronize, that is, the fraction of balls of either colour in each urn converges to the same limit almost surely. A different kind of asymptotic behaviour is observed on bipartite graphs. We also prove similar results for the case of finite directed graphs.
Keywords: Urn processes; Synchronization; Stochastic approximation; Bipartite graphs; Multiple drawings; 60K35; 60F15; 60F05 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10959-024-01365-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01365-x
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/10959
DOI: 10.1007/s10959-024-01365-x
Access Statistics for this article
Journal of Theoretical Probability is currently edited by Andrea Monica
More articles in Journal of Theoretical Probability from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().