Weak Versus Strong Dominance of Shrinkage Estimators
Giuseppe De Luca () and
Jan R. Magnus ()
Additional contact information
Jan R. Magnus: Vrije Universiteit Amsterdam
Journal of Quantitative Economics, 2021, vol. 19, issue 1, No 12, 239-266
Abstract:
Abstract We consider the estimation of the mean of a multivariate normal distribution with known variance. Most studies consider the risk of competing estimators, that is the trace of the mean squared error matrix. In contrast we consider the whole mean squared error matrix, in particular its eigenvalues. We prove that there are only two distinct eigenvalues and apply our findings to the James–Stein and the Thompson class of estimators. It turns out that the famous Stein paradox is no longer a paradox when we consider the whole mean squared error matrix rather than only its trace.
Keywords: Shrinkage; Dominance; James–Stein; 62C15; 62C20; 62J07; C13; C51 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s40953-021-00270-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jqecon:v:19:y:2021:i:1:d:10.1007_s40953-021-00270-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/40953
DOI: 10.1007/s40953-021-00270-y
Access Statistics for this article
Journal of Quantitative Economics is currently edited by Dilip Nachane and P.G. Babu
More articles in Journal of Quantitative Economics from Springer, The Indian Econometric Society (TIES) Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().