EconPapers    
Economics at your fingertips  
 

A decomposition heuristic for rotational workforce scheduling

Tristan Becker ()
Additional contact information
Tristan Becker: RWTH Aachen University, School of Business and Economics, Chair of Operations Management

Journal of Scheduling, 2020, vol. 23, issue 5, No 2, 539-554

Abstract: Abstract In rotational workforce planning, a schedule is constructed from a sequence of work and rest periods. Each employee starts at a different part of the schedule, and after a certain amount of time, the schedule repeats. The length of the schedule increases with a higher number of employees. At the same time, various constraints on work sequences and days off have to be considered. For a large number of employees, it is difficult to construct a schedule that meets the requirements. It is important to ensure low solution times independently of the problem instance characteristics. In this work, a novel decomposition approach for rotational shift scheduling is proposed. The decomposition exploits the fact that most constraints in rotational workforce scheduling are imposed on the work shift sequence. By considering a fixed set of blocks to cover the demand, the problem complexity can be greatly reduced. Given a fixed set of blocks, we propose a network model that determines whether a feasible sequence of shift blocks exists. The decomposition approach is applied to the problem structure of the Rotating Workforce Scheduling Problem but may be extended to different problem structures. In a computational study, the decomposition approach is compared to a mathematical formulation and previous exact and heuristic approaches. Computational results show that the decomposition approach greatly outperforms previous heuristics on the standard benchmarks.

Keywords: Staff scheduling; Integer programming; Decomposition; Rotating Workforce Scheduling Problem (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://link.springer.com/10.1007/s10951-020-00659-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jsched:v:23:y:2020:i:5:d:10.1007_s10951-020-00659-2

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10951

DOI: 10.1007/s10951-020-00659-2

Access Statistics for this article

Journal of Scheduling is currently edited by Edmund Burke and Michael Pinedo

More articles in Journal of Scheduling from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2022-05-12
Handle: RePEc:spr:jsched:v:23:y:2020:i:5:d:10.1007_s10951-020-00659-2