A new LP rounding algorithm for the active time problem
Gruia Cǎlinescu () and
Kai Wang ()
Additional contact information
Gruia Cǎlinescu: Illinois Institute of Technology
Kai Wang: City University of Hong Kong
Journal of Scheduling, 2021, vol. 24, issue 5, No 8, 543-552
Abstract:
Abstract In this paper, we work on the scheduling problem with active time model. We have a set of preemptive jobs with integral release times, deadlines and required processing lengths, while the preemption of jobs is only allowed at integral time points. We have a single machine that can process at most g distinct job units at any given time unit when the machine is switched on. The objective is to find a schedule that completes all jobs within their timing constraints and minimizes the time when the machine is on, i.e., the active time. This problem has been studied by Chang et al. where they proposed an LP rounding approach which gives a 2-approximation solution. In this paper, we also give a 2-approximation algorithm based on LP rounding approach with a different rounding technique and analysis. Finally, we give a new linear programming formulation for which we conjecture that the integrality gap is 5/3, which might bring new hope for beating the barrier of 2 for the approximation ratio.
Keywords: Approximation algorithm; Scheduling; Linear program rounding; Active time (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10951-020-00676-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jsched:v:24:y:2021:i:5:d:10.1007_s10951-020-00676-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10951
DOI: 10.1007/s10951-020-00676-1
Access Statistics for this article
Journal of Scheduling is currently edited by Edmund Burke and Michael Pinedo
More articles in Journal of Scheduling from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().