EconPapers    
Economics at your fingertips  
 

Block-based state-expanded network models for multi-activity shift scheduling

Michael Römer ()
Additional contact information
Michael Römer: Bielefeld University

Journal of Scheduling, 2024, vol. 27, issue 4, No 3, 361 pages

Abstract: Abstract This paper presents new mixed-integer linear programming formulations for multi-activity shift scheduling problems (MASSP). In these formulations, the rules governing shift feasibility are encoded in block-based state-expanded networks in which nodes are associated with states and arcs represent assignments of blocks of work or break periods inducing state transitions. A key advantage of these formulations is that for the anonymous MASSP in which all employees are considered as equal only a single network with integer flow variables is needed as long as the network encodes all shift composition rules. A challenging aspect is that the networks can become very large, yielding huge models that are hard to solve for large problem instances. To address this challenge, this paper proposes two exact modeling techniques that substantially reduce the size of the model instances: First, it introduces a set of aggregate side constraints enforcing that an integer flow solution can be decomposed into paths representing feasible shifts. Second, it proposes to decouple the shift composition from the assignment of concrete activities to blocks of work periods, thereby removing a large amount of symmetry from the original model. In a computational study with two MASSP instance sets from the literature dealing with shift scheduling problems, we demonstrate the effectiveness of these techniques for reducing the both size of the model instances and the solution time: We are able to solve all instances, including more than 70 previously open instances, to optimality–the vast majority of them in less than 30 min on a notebook computer.

Keywords: Multi-activity shift scheduling; State-expanded networks; Mixed-integer linear programming (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10951-023-00789-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jsched:v:27:y:2024:i:4:d:10.1007_s10951-023-00789-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10951

DOI: 10.1007/s10951-023-00789-3

Access Statistics for this article

Journal of Scheduling is currently edited by Edmund Burke and Michael Pinedo

More articles in Journal of Scheduling from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jsched:v:27:y:2024:i:4:d:10.1007_s10951-023-00789-3