Short-term underground mine planning with uncertain activity durations using constraint programming
Younes Aalian (),
Michel Gamache () and
Gilles Pesant ()
Additional contact information
Younes Aalian: Polytechnique Montréal
Michel Gamache: Polytechnique Montréal
Gilles Pesant: Polytechnique Montréal
Journal of Scheduling, 2024, vol. 27, issue 5, No 2, 423-439
Abstract:
Abstract The short-term scheduling of activities in underground mines is an important step in mining operations. This procedure is a challenging optimization problem since it deals with many resources and activities conducted in a confined working space. Moreover, underground mining operations deal with multiple uncertainties such as the variation of activity durations. In this paper, a constraint programming (CP) model is proposed for short-term planning in underground mines. The developed model takes into account the technical requirements of underground operations to build realistic mine schedules. Furthermore, two different approaches are proposed based on the CP model for robust short-term underground mine scheduling. The first approach aims to create a robust schedule using multiple scenarios of the problem. This stochastic CP model enables to find a set of ordered robust sequences of activities performed by each available disjunctive resource over several scenarios. In the second approach, a confidence constraint is introduced in the CP model to specify the probability that the schedule generated would not underestimate the duration of activities. The model allows the mine planner to control the risk level with which an optimized solution should be produced such that it can be implemented given the actual activity durations. The presented approaches are tested on real data sets of an underground gold mine in Canada. An evaluation model is designed to evaluate the robust performance of the proposed models. The experiments demonstrate that both scenario-based and confidence-constraint approaches outperform the deterministic model by generating schedules that are more robust to uncertainties in underground operations.
Keywords: Mine planning; Constraint programming; Short-term planning; Underground mine; Scheduling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10951-024-00808-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jsched:v:27:y:2024:i:5:d:10.1007_s10951-024-00808-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10951
DOI: 10.1007/s10951-024-00808-x
Access Statistics for this article
Journal of Scheduling is currently edited by Edmund Burke and Michael Pinedo
More articles in Journal of Scheduling from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().