Practical considerations when analyzing discrete survival times using the grouped relative risk model
Rachel MacKay Altman () and
Andrew Henrey
Additional contact information
Rachel MacKay Altman: Simon Fraser University
Andrew Henrey: Simon Fraser University
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2018, vol. 24, issue 3, No 8, 532-547
Abstract:
Abstract The grouped relative risk model (GRRM) is a popular semi-parametric model for analyzing discrete survival time data. The maximum likelihood estimators (MLEs) of the regression coefficients in this model are often asymptotically efficient relative to those based on a more restrictive, parametric model. However, in settings with a small number of sampling units, the usual properties of the MLEs are not assured. In this paper, we discuss computational issues that can arise when fitting a GRRM to small samples, and describe conditions under which the MLEs can be ill-behaved. We find that, overall, estimators based on a penalized score function behave substantially better than the MLEs in this setting and, in particular, can be far more efficient. We also provide methods of assessing the fit of a GRRM to small samples.
Keywords: Bias reduction; Discrete survival times; Efficiency; Grouped relative risk model; Penalized score function; Small samples (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10985-017-9410-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:24:y:2018:i:3:d:10.1007_s10985-017-9410-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-017-9410-7
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().