A nonparametric maximum likelihood approach for survival data with observed cured subjects, left truncation and right-censoring
Jue Hou,
Christina D. Chambers and
Ronghui Xu ()
Additional contact information
Jue Hou: University of California
Christina D. Chambers: University of California
Ronghui Xu: University of California
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2018, vol. 24, issue 4, No 9, 612-651
Abstract:
Abstract We consider observational studies in pregnancy where the outcome of interest is spontaneous abortion (SAB). This at first sight is a binary ‘yes’ or ‘no’ variable, albeit there is left truncation as well as right-censoring in the data. Women who do not experience SAB by gestational week 20 are ‘cured’ from SAB by definition, that is, they are no longer at risk. Our data is different from the common cure data in the literature, where the cured subjects are always right-censored and not actually observed to be cured. We consider a commonly used cure rate model, with the likelihood function tailored specifically to our data. We develop a conditional nonparametric maximum likelihood approach. To tackle the computational challenge we adopt an EM algorithm making use of “ghost copies” of the data, and a closed form variance estimator is derived. Under suitable assumptions, we prove the consistency of the resulting estimator which involves an unbounded cumulative baseline hazard function, as well as the asymptotic normality. Simulation results are carried out to evaluate the finite sample performance. We present the analysis of the motivating SAB study to illustrate the advantages of our model addressing both occurrence and timing of SAB, as compared to existing approaches in practice.
Keywords: Cure rate model; EM algorithm; Ghost copy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10985-017-9415-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:24:y:2018:i:4:d:10.1007_s10985-017-9415-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-017-9415-2
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().