EconPapers    
Economics at your fingertips  
 

Partially hidden multi-state modelling of a prolonged disease state defined by a composite outcome

Vernon T. Farewell (), Li Su () and Christopher Jackson ()
Additional contact information
Vernon T. Farewell: University of Cambridge
Li Su: University of Cambridge
Christopher Jackson: University of Cambridge

Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2019, vol. 25, issue 4, No 7, 696-711

Abstract: Abstract For rheumatic diseases, Minimal Disease Activity (MDA) is usually defined as a composite outcome which is a function of several individual outcomes describing symptoms or quality of life. There is ever increasing interest in MDA but relatively little has been done to characterise the pattern of MDA over time. Motivated by the aim of improving the modelling of MDA in psoriatic arthritis, the use of a two-state model to estimate characteristics of the MDA process is illustrated when there is particular interest in prolonged periods of MDA. Because not all outcomes necessary to define MDA are measured at all clinic visits, a partially hidden multi-state model with latent states is used. The defining outcomes are modelled as conditionally independent given these latent states, enabling information from all visits, even those with missing data on some variables, to be used. Data from the Toronto Psoriatic Arthritis Clinic are analysed to demonstrate improvements in accuracy and precision from the inclusion of data from visits with incomplete information on MDA. An additional benefit of this model is that it can be extended to incorporate explanatory variables, which allows process characteristics to be compared between groups. In the example, the effect of explanatory variables, modelled through the use of relative risks, is also summarised in a potentially more clinically meaningful manner by comparing times in states, and probabilities of visiting states, between patient groups.

Keywords: Composite outcome; Hidden states; Minimal disease activity; Multi-state models; Psoriatic arthritis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10985-018-09460-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:25:y:2019:i:4:d:10.1007_s10985-018-09460-y

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985

DOI: 10.1007/s10985-018-09460-y

Access Statistics for this article

Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee

More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:lifeda:v:25:y:2019:i:4:d:10.1007_s10985-018-09460-y