EconPapers    
Economics at your fingertips  
 

Assessing the value of a censored surrogate outcome

Layla Parast (), Lu Tian and Tianxi Cai
Additional contact information
Layla Parast: RAND Corporation
Lu Tian: Stanford University
Tianxi Cai: Harvard T.H. Chan School of Public Health

Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2020, vol. 26, issue 2, No 2, 245-265

Abstract: Abstract Assessing the potential of surrogate markers and surrogate outcomes for replacing a long term outcome is an active area of research. The interest in this topic is partly motivated by increasing pressure from stakeholders to shorten the time required to evaluate the safety and/or efficacy of a treatment or intervention such that treatments deemed safe and effective can be made available to those in need more quickly. Most existing methods in surrogacy evaluation either require strict model assumptions or that primary outcome and surrogate outcome information is available for all study participants. In this paper, we focus on a setting where the primary outcome is subject to censoring and the aim is to quantify the surrogacy of an intermediate outcome, which is also subject to censoring. We define the surrogacy as the proportion of treatment effect on the primary outcome that is explained by the intermediate surrogate outcome information and propose two robust methods to estimate this quantity. We propose both a nonparametric approach that uses a kernel smoothed Nelson–Aalen estimator of conditional survival, and a semiparametric method that derives conditional survival estimates from a landmark Cox proportional hazards model. Simulation studies demonstrate that both approaches perform well in finite samples. Our methodological development is motivated by our interest in investigating the use of a composite cardiovascular endpoint as a surrogate outcome in a randomized study of the effectiveness of angiotensin-converting enzyme inhibitors on survival. We apply the proposed methods to quantify the surrogacy of this potential surrogate outcome for the primary outcome, time to death.

Keywords: Surrogate; Survival analysis; Nonparametric; Kernel (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10985-019-09473-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:26:y:2020:i:2:d:10.1007_s10985-019-09473-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985

DOI: 10.1007/s10985-019-09473-1

Access Statistics for this article

Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee

More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:lifeda:v:26:y:2020:i:2:d:10.1007_s10985-019-09473-1