Semiparametric regression and risk prediction with competing risks data under missing cause of failure
Giorgos Bakoyannis (),
Ying Zhang and
Constantin T. Yiannoutsos
Additional contact information
Giorgos Bakoyannis: Indiana University Fairbanks School of Public Health and School of Medicine
Ying Zhang: University of Nebraska Medical Center
Constantin T. Yiannoutsos: Indiana University Fairbanks School of Public Health and School of Medicine
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2020, vol. 26, issue 4, No 2, 659-684
Abstract:
Abstract The cause of failure in cohort studies that involve competing risks is frequently incompletely observed. To address this, several methods have been proposed for the semiparametric proportional cause-specific hazards model under a missing at random assumption. However, these proposals provide inference for the regression coefficients only, and do not consider the infinite dimensional parameters, such as the covariate-specific cumulative incidence function. Nevertheless, the latter quantity is essential for risk prediction in modern medicine. In this paper we propose a unified framework for inference about both the regression coefficients of the proportional cause-specific hazards model and the covariate-specific cumulative incidence functions under missing at random cause of failure. Our approach is based on a novel computationally efficient maximum pseudo-partial-likelihood estimation method for the semiparametric proportional cause-specific hazards model. Using modern empirical process theory we derive the asymptotic properties of the proposed estimators for the regression coefficients and the covariate-specific cumulative incidence functions, and provide methodology for constructing simultaneous confidence bands for the latter. Simulation studies show that our estimators perform well even in the presence of a large fraction of missing cause of failures, and that the regression coefficient estimator can be substantially more efficient compared to the previously proposed augmented inverse probability weighting estimator. The method is applied using data from an HIV cohort study and a bladder cancer clinical trial.
Keywords: Cause-specific hazard; Cumulative incidence function; Confidence band; 62N01; 62N02 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10985-020-09494-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:26:y:2020:i:4:d:10.1007_s10985-020-09494-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-020-09494-1
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().