EconPapers    
Economics at your fingertips  
 

Model selection among Dimension-Reduced generalized Cox models

Ming-Yueh Huang () and Kwun Chuen Gary Chan
Additional contact information
Ming-Yueh Huang: Institute of Statistical Science, Academia Sinica
Kwun Chuen Gary Chan: University of Washington

Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2022, vol. 28, issue 3, No 6, 492-511

Abstract: Abstract Conventional semiparametric hazards regression models rely on the specification of particular model formulations, such as proportional-hazards feature and single-index structures. Instead of checking these modeling assumptions one-by-one, we proposed a class of dimension-reduced generalized Cox models, and then a consistent model selection procedure among this class to select covariates with proportional-hazards feature and a proper model formulation for non-proportional-hazards covariates. In this class, the non-proportional-hazards covariates are treated in a nonparametric manner, and a partial sufficient dimension reduction is introduced to reduce the curse of dimensionality. A semiparametric efficient estimation is proposed to estimate these models. Based on the proposed estimation, we further constructed a cross-validation type criterion to consistently select the correct model among this class. Most importantly, this class of hazards regression models contains the fully nonparametric hazards regression model as the most saturated submodel, and hence no further model diagnosis is required. Overall speaking, this model selection approach is more effective than performing a sequence of conventional model checking. The proposed method is illustrated by simulation studies and a data example.

Keywords: Information bound; Partial sufficient dimension reduction; Proportional-hazards; Right-censoring; 62G018; 62N02 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10985-022-09565-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:28:y:2022:i:3:d:10.1007_s10985-022-09565-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985

DOI: 10.1007/s10985-022-09565-5

Access Statistics for this article

Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee

More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:lifeda:v:28:y:2022:i:3:d:10.1007_s10985-022-09565-5