Screening for chronic diseases: optimizing lead time through balancing prescribed frequency and individual adherence
John D. Rice,
Brent A. Johnson and
Robert L. Strawderman ()
Additional contact information
John D. Rice: University of Colorado
Brent A. Johnson: University of Rochester
Robert L. Strawderman: University of Rochester
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2022, vol. 28, issue 4, No 5, 605-636
Abstract:
Abstract Screening for chronic diseases, such as cancer, is an important public health priority, but traditionally only the frequency or rate of screening has received attention. In this work, we study the importance of adhering to recommended screening policies and develop new methodology to better optimize screening policies when adherence is imperfect. We consider a progressive disease model with four states (healthy, undetectable preclinical, detectable preclinical, clinical), and overlay this with a stochastic screening–behavior model using the theory of renewal processes that allows us to capture imperfect adherence to screening programs in a transparent way. We show that decreased adherence leads to reduced efficacy of screening programs, quantified here using elements of the lead time distribution (i.e., the time between screening diagnosis and when diagnosis would have occurred clinically in the absence of screening). Under the assumption of an inverse relationship between prescribed screening frequency and individual adherence, we show that the optimal screening frequency generally decreases with increasing levels of non-adherence. We apply this model to an example in breast cancer screening, demonstrating how accounting for imperfect adherence affects the recommended screening frequency.
Keywords: Forward recurrence time; Periodic screening; Renewal processes; Semi-Markov models (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10985-022-09563-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:28:y:2022:i:4:d:10.1007_s10985-022-09563-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-022-09563-7
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().