Semiparametric predictive inference for failure data using first-hitting-time threshold regression
Mei-Ling Ting Lee and
G. A. Whitmore ()
Additional contact information
Mei-Ling Ting Lee: University of Maryland
G. A. Whitmore: McGill University
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2023, vol. 29, issue 3, No 2, 508-536
Abstract:
Abstract The progression of disease for an individual can be described mathematically as a stochastic process. The individual experiences a failure event when the disease path first reaches or crosses a critical disease level. This happening defines a failure event and a first hitting time or time-to-event, both of which are important in medical contexts. When the context involves explanatory variables then there is usually an interest in incorporating regression structures into the analysis and the methodology known as threshold regression comes into play. To date, most applications of threshold regression have been based on parametric families of stochastic processes. This paper presents a semiparametric form of threshold regression that requires the stochastic process to have only one key property, namely, stationary independent increments. As this property is frequently encountered in real applications, this model has potential for use in many fields. The mathematical underpinnings of this semiparametric approach for estimation and prediction are described. The basic data element required by the model is a pair of readings representing the observed change in time and the observed change in disease level, arising from either a failure event or survival of the individual to the end of the data record. An extension is presented for applications where the underlying disease process is unobservable but component covariate processes are available to construct a surrogate disease process. Threshold regression, used in combination with a data technique called Markov decomposition, allows the methods to handle longitudinal time-to-event data by uncoupling a longitudinal record into a sequence of single records. Computational aspects of the methods are straightforward. An array of simulation experiments that verify computational feasibility and statistical inference are reported in an online supplement. Case applications based on longitudinal observational data from The Osteoarthritis Initiative (OAI) study are presented to demonstrate the methodology and its practical use.
Keywords: Bernoulli regression; Cumulant generating function; Disease progression; Failure process; Health process; Latent health; Lévy process; Longitudinal data; Markov decomposition; Osteoarthritis; Surrogate disease process; Stationary independent increments; Wiener process (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10985-022-09583-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:29:y:2023:i:3:d:10.1007_s10985-022-09583-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-022-09583-3
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().