Bayesian joint analysis of longitudinal data and interval-censored failure time data
Yuchen Mao (),
Lianming Wang () and
Xuemei Sui ()
Additional contact information
Yuchen Mao: University of South Carolina
Lianming Wang: University of South Carolina
Xuemei Sui: University of South Carolina
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, 2025, vol. 31, issue 4, No 10, 950-969
Abstract:
Abstract Joint modeling of longitudinal responses and survival time has gained great attention in statistics literature over the last few decades. Most existing works focus on joint analysis of longitudinal data and right-censored data. In this article, we propose a new frailty model for joint analysis of a longitudinal response and interval-censored survival time. Such data commonly arise in real-life studies where participants are examined at periodical or irregular follow-up times. The proposed joint model contains a nonlinear mixed effects submodel for the longitudinal response and a semiparametric probit submodel for the survival time given a shared normal frailty. The proposed joint model allows the regression coefficients to be interpreted as the marginal effects up to a multiplicative constant on both the longitudinal and survival responses. Adopting splines allows us to approximate the unknown baseline functions in both submodels with only a finite number of unknown coefficients while providing great modeling flexibility. An efficient Gibbs sampler is developed for posterior computation, in which all parameters and latent variables can be sampled easily from their full conditional distributions. The proposed method shows a good estimation performance in simulation studies and is further illustrated by a real-life application to the patient data from the Aerobics Center Longitudinal Study. The R code for the proposed methodology is made available for public use.
Keywords: Interval-censored data; Joint modeling; Longitudinal data; Monotone splines; Probit model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10985-025-09666-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:lifeda:v:31:y:2025:i:4:d:10.1007_s10985-025-09666-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10985
DOI: 10.1007/s10985-025-09666-x
Access Statistics for this article
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data is currently edited by Mei-Ling Ting Lee
More articles in Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().