EconPapers    
Economics at your fingertips  
 

The carbon sequestration potential of tree crop plantations

Rico Kongsager (), Jonas Napier and Ole Mertz

Mitigation and Adaptation Strategies for Global Change, 2013, vol. 18, issue 8, 1197-1213

Abstract: Carbon (C) conservation and sequestration in many developing countries needs to be accompanied by socio-economic improvements. Tree crop plantations can be a potential path for coupling climate change mitigation and economic development by providing C sequestration and supplying wood and non-wood products to meet domestic and international market requirements at the same time. Financial compensation for such plantations could potentially be covered by the Clean Development Mechanism under the United Nations Framework Convention on Climate Change (FCCC) Kyoto Protocol, but its suitability has also been suggested for integration into REDD + (reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 tC/ha) and orange (76 tC/ha) plantations have a much lower C content, and oil palm (45 tC/ha) has the lowest C potential, assuming that the yield is not used as biofuel. There is considerable C sequestration potential in plantations if they are established on land with modest C content such as degraded forest or agricultural land, and not on land with old-growth forest. We also show that simple C assessment methods can give reliable results, which makes it easier for developing countries to partake in REDD + or other payment schemes. Copyright Springer Science+Business Media B.V. 2013

Keywords: Aboveground biomass; Allometric equations; Carbon estimations; Carbon sequestration; Ghana; Kade; Land-use change; Tree crop plantation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11027-012-9417-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:18:y:2013:i:8:p:1197-1213

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027

DOI: 10.1007/s11027-012-9417-z

Access Statistics for this article

Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon

More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:masfgc:v:18:y:2013:i:8:p:1197-1213