Minimizing changing climate impact on buildings using easily and economically feasible earth to air heat exchanger technique
Thainswemong Choudhury () and
Anil Misra ()
Mitigation and Adaptation Strategies for Global Change, 2014, vol. 19, issue 7, 947-954
Abstract:
The biggest challenge of the 21st century is to satisfy the escalating demand of energy and minimize the globally changing climate impact. Earth to air heat exchanger (EAHE) system can effectively reduce heating affects on buildings. An experimental study was carried out by designing EAHE system using low cost building materials like Bamboo (Bambuseae) and hydraform (cement and soil plaster) to reduce the energy consumption of buildings and minimize the impact of climate change. This system utilizes earth’s constant subterranean temperature for naturally heating or cooling the inlet air. This study was carried out in the North Eastern part of India. An open loop EAHE system was developed to predict the heating and cooling potential of the system. Within the system locally available bamboos were used for constructing the tunnel pipes and soil-cement mixture plaster was used to enhance the conductivity of the bamboo pipes. Soil-cement mixtures are capable of decreasing the humidity by 30 to 40 %. Majority of the North Eastern region of India, have humid climatic conditions through out the year. Experiment was performed continuously for 7 days and the result shows that irrespective to the inlet air temperature (ranges from 35 °C to 42 °C), outlet air temperature was recorded between 25 °C and 26 °C, which shows the effectiveness of the system. After a series of experimental analysis the study reveals that underground tunnel based fresh air delivery system is one of the easily feasible and economically feasible techniques which can drastically reduce the energy consumption of the buildings and help in addressing the continuously escalating demand of power and minimizing the impact of changing climatic conditions on buildings. Copyright Springer Science+Business Media Dordrecht 2014
Keywords: Earth to Air Heat exchanger system (EAHE); Ventilation; Renewable energy; Energy consumption; Environmental management (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11027-013-9453-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:19:y:2014:i:7:p:947-954
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
DOI: 10.1007/s11027-013-9453-3
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().