The effect of increasing lifespan and recycling rate on carbon storage in wood products from theoretical model to application for the European wood sector
Pau Brunet-Navarro (),
Hubert Jochheim () and
Bart Muys ()
Additional contact information
Pau Brunet-Navarro: Institute of Landscape Systems Analysis
Hubert Jochheim: Institute of Landscape Systems Analysis
Bart Muys: University of Leuven
Mitigation and Adaptation Strategies for Global Change, 2017, vol. 22, issue 8, No 4, 1193-1205
Abstract:
Abstract The use of wood products is often promoted as a climate change mitigation option to reduce atmospheric carbon dioxide concentrations. In previous literature, we identified longevity and recycling rate as two determining factors that influence the carbon stock in wood products, but no studies have predicted the effect of improved wood use on carbon storage over time. In this study, we aimed at evaluating changes in the lifespan and the recycling rate as two options for enhancing carbon stock in wood products for different time horizons. We first explored the behaviour over time of both factors in a theoretical simulation, and then calculated their effect for the European wood sector of the future. The theoretical simulation shows that the carbon stock in wood products increases linearly when increasing the average lifespan of wood products and exponentially when improving the recycling rate. The emissions savings under the current use of wood products in Europe in 2030 were estimated at 57.65 Mt carbon dioxide (CO2) per year. This amount could be increased 5 Mt CO2 if average lifespan increased 19.54 % or if recycling rate increased 20.92 % in 2017. However, the combination of both strategies could increase the emissions saving almost 5 Mt CO2 more by 2030. Incrementing recycling rate of paper and paperboard is the best short-term strategy (2030) to reduce emissions, but elongating average lifespan of wood-based panels is a better strategy for longer term periods (2046).
Keywords: Cascade use; Climate change mitigation; Modelling; Carbon sequestration; Time scale (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11027-016-9722-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:22:y:2017:i:8:d:10.1007_s11027-016-9722-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
DOI: 10.1007/s11027-016-9722-z
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().