EconPapers    
Economics at your fingertips  
 

Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia

Ni’matul Khasanah () and Meine Noordwijk
Additional contact information
Ni’matul Khasanah: World Agroforestry Centre (ICRAF)
Meine Noordwijk: World Agroforestry Centre (ICRAF)

Mitigation and Adaptation Strategies for Global Change, 2019, vol. 24, issue 1, No 8, 147-163

Abstract: Abstract Most attention in quantifying carbon dioxide (CO2) emissions from tropical peatlands has been on large-scale plantations (industrial timber, oil palm (Elaeis guinensis)), differing in drainage and land-use practices from those of smallholder farms. We measured subsidence and changes in bulk density and carbon organic content to calculate CO2 emissions over 2.5 years in a remnant logged-over forest and four dominant smallholder land-use types in Tanjung Jabung Barat District, Jambi Province, Sumatra, Indonesia: (1) simple rubber (Hevea brasiliensis) agroforest (> 30 years), (2) mixed coconut (Cocos nucifera) and coffee gardens (Coffea liberica) (> 40 years), (3) mixed betel nut (Areca catechu) and coffee gardens (> 20 years), and (4) oil palm plantation (1 year). We quantified changes in microtopography for each site for greater accuracy of subsidence estimates and tested the effects of nitrogen and phosphorus application. All sites had a fibric type of peat with depths of 50 to > 100 cm. A recently established oil palm had the highest rate of peat subsidence and emission (4.7 cm year−1 or 121 Mg CO2 ha−1 year−1) while the remnant forest had the lowest (1.8 cm year−1 or 40 Mg CO2 ha−1 year−1). Other land-use types subsided by 2–3 cm year−1, emitting 70–85 Mg CO2 ha−1 year−1. Fertilizer application did not have a consistent effect on inferred emissions. Additional emissions in the first years after drainage, despite groundwater tables of 40 cm, were of the order of belowground biomass of peat forest. Despite maintaining higher water tables, smallholder landscapes have CO2 emissions close to, but above, current IPCC defaults.

Keywords: Agroforestry; CO2 emissions; Fertilizer application; Peat subsidence; Smallholder; Tropical peatlands (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11027-018-9803-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:24:y:2019:i:1:d:10.1007_s11027-018-9803-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027

DOI: 10.1007/s11027-018-9803-2

Access Statistics for this article

Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon

More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:masfgc:v:24:y:2019:i:1:d:10.1007_s11027-018-9803-2