Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options
L. Brilli (),
E. Lugato,
M. Moriondo,
B. Gioli,
P. Toscano,
A. Zaldei,
L. Leolini,
C. Cantini,
G. Caruso,
R. Gucci,
P. Merante,
C. Dibari,
R. Ferrise,
M. Bindi and
S. Costafreda-Aumedes
Additional contact information
L. Brilli: IBIMET-CNR
E. Lugato: European Commission, Joint Research Centre (JRC), Directorate for Sustainable Resources, Land Resources Unit
M. Moriondo: IBIMET-CNR
B. Gioli: IBIMET-CNR
P. Toscano: IBIMET-CNR
A. Zaldei: IBIMET-CNR
L. Leolini: University of Florence
C. Cantini: IVALSA-CNR
G. Caruso: Università di Pisa
R. Gucci: Università di Pisa
P. Merante: IBIMET-CNR
C. Dibari: University of Florence
R. Ferrise: University of Florence
M. Bindi: University of Florence
S. Costafreda-Aumedes: University of Florence
Mitigation and Adaptation Strategies for Global Change, 2019, vol. 24, issue 3, No 7, 467-491
Abstract:
Abstract The need to reduce the expected impact of climate change, finding sustainable ways to maintain or increase the carbon (C) sequestration capacity and productivity of agricultural systems, is one of the most important challenges of the twenty-first century. Olive (Olea europaea L.) groves can play a fundamental role due to their potential to sequester C in soil and woody compartments, associated with widespread cultivation in the Mediterranean basin. The implementation of field experiments to assess olive grove responses under different conditions, complemented by simulation models, can be a powerful approach to explore future land-atmosphere C feedbacks. The DayCent biogeochemical model was calibrated and validated against observed net ecosystem exchange, net primary productivity, aboveground biomass, leaf area index, and yield in two Italian olive groves. In addition, potential changes in C-sequestration capacity and productivity were assessed under two types of management (extensive and intensive), 35 climate change scenarios (ΔT-temperature from + 0 °C to + 3 °C; ΔP-precipitation from 0.0 to − 20%), and six areas across the Mediterranean basin (Brindisi, Coimbra, Crete, Cordoba, Florence, and Montpellier). The results indicated that (i) the DayCent model, properly calibrated, can be used to quantify olive grove daily net ecosystem exchange and net primary production dynamics; (ii) a decrease in net ecosystem exchange and net primary production is predicted under both types of management by approaching the most extreme climate conditions (ΔT = + 3 °C; ΔP = − 20%), especially in dry and warm areas; (iii) irrigation can compensate for net ecosystem exchange and net primary production losses in almost all areas, while ecophysiological air temperature thresholds determine the magnitude and sign of C-uptake; (iv) future warming is expected to modify the seasonal net ecosystem exchange and net primary production pattern, with higher photosynthetic activity in winter and a prolonged period of photosynthesis inhibition during summer compared to the baseline; (v) a substantial decrease in mitigation capacity and productivity of extensively managed olive groves is expected to accelerate between + 1.5 and + 2 °C warming compared to the current period, across all Mediterranean areas; (vi) adaptation measures aimed at increasing soil water content or evapotranspiration reduction should be considered the mostly suitable for limiting the decrease of both production and mitigation capacity in the next decades.
Keywords: Olea europaea; DayCent; Climate change; Mitigation; Productivity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11027-018-9824-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:24:y:2019:i:3:d:10.1007_s11027-018-9824-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
DOI: 10.1007/s11027-018-9824-x
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().