The potential environmental response to increasing ocean alkalinity for negative emissions
Sarah Gore (),
Phil Renforth and
Rupert Perkins
Additional contact information
Sarah Gore: Cardiff University
Phil Renforth: Cardiff University
Rupert Perkins: Cardiff University
Mitigation and Adaptation Strategies for Global Change, 2019, vol. 24, issue 7, No 1, 1211 pages
Abstract:
Abstract The negative emissions technology, artificial ocean alkalinization (AOA), aims to store atmospheric carbon dioxide (CO2) in the ocean by increasing total alkalinity (TA). Calcium carbonate saturation state (ΩCaCO3) and pH would also increase meaning that AOA could alleviate sensitive regions and ecosystems from ocean acidification. However, AOA could raise pH and ΩCaCO3 well above modern-day levels, and very little is known about the environmental and biological impact of this. After treating a red calcifying algae (Corallina spp.) to elevated TA seawater, carbonate production increased by 60% over a control. This has implication for carbon cycling in the past, but also constrains the environmental impact and efficiency of AOA. Carbonate production could reduce the efficiency of CO2 removal. Increasing TA, however, did not significantly influence Corallina spp. primary productivity, respiration, or photophysiology. These results show that AOA may not be intrinsically detrimental for Corallina spp. and that AOA has the potential to lessen the impacts of ocean acidification. However, the experiment tested a single species within a controlled environment to constrain a specific unknown, the rate change of calcification, and additional work is required to understand the impact of AOA on other organisms, whole ecosystems, and the global carbon cycle.
Keywords: Ocean alkalinity; Corallina spp.; Calcification; Carbon dioxide removal; Artificial ocean alkalinization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11027-018-9830-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-018-9830-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
DOI: 10.1007/s11027-018-9830-z
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().