EconPapers    
Economics at your fingertips  
 

Biomass-based negative emission technology options with combined heat and power generation

Tobias Pröll () and Florian Zerobin
Additional contact information
Tobias Pröll: University of Natural Resources and Life Sciences, Vienna
Florian Zerobin: University of Natural Resources and Life Sciences, Vienna

Mitigation and Adaptation Strategies for Global Change, 2019, vol. 24, issue 7, No 7, 1307-1324

Abstract: Abstract Biomass-based combined heat and power (CHP) generation with different carbon capture approaches is investigated in this study. Only direct carbon dioxide (CO2) emissions are considered. The selected processes are (i) a circulating fluidized bed boiler for wood chips connected to an extraction/condensation steam cycle CHP plant without carbon capture; (ii) plant (i), but with post-combustion CO2 capture; (iii) chemical looping combustion (CLC) of solid biomass connected to the steam cycle CHP plant; (iv) rotary kiln slow pyrolysis of biomass for biochar soil storage and direct combustion of volatiles supplying the steam cycle CHP plant with the CO2 from volatiles combustion escaping to the atmosphere; (v) case (iv) with additional post-combustion CO2 capture; and (vi) case (iv) with CLC of volatiles. Reasonable assumptions based on literature data are taken for the performance effects of the CO2 capture systems and the six process options are compared. CO2 compression to pipeline pressure is considered. The results show that both bioenergy with carbon capture and storage (BECCS) and biochar qualify as negative emission technologies (NETs) and that there is an energy-based performance advantage of BECCS over biochar because of the unreleased fuel energy in the biochar case. Additional aspects of biomass fuels (ash content and ash melting behavior) and sustainable soil management (nutrient cycles) for biomass production should be quantitatively considered in more detailed future assessments, as there may be certain biomass fuels, and environmental and economic settings where biochar application to soils is indicated rather than the full conversion of the biomass to energy and CO2.

Keywords: Biomass; Carbon capture and storage; Bioenergy; Biochar; Chemical looping combustion; Pyrolysis; Combined heat and power; Negative emission technologies (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://link.springer.com/10.1007/s11027-019-9841-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-019-9841-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027

DOI: 10.1007/s11027-019-9841-4

Access Statistics for this article

Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon

More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:masfgc:v:24:y:2019:i:7:d:10.1007_s11027-019-9841-4