EconPapers    
Economics at your fingertips  
 

Plant trees for the planet: the potential of forests for climate change mitigation and the major drivers of national forest area

Sebastian Mader ()
Additional contact information
Sebastian Mader: University of Bern

Mitigation and Adaptation Strategies for Global Change, 2020, vol. 25, issue 4, No 2, 519-536

Abstract: Abstract Forests are one of the most cost-effective ways to sequester carbon today. Here, I estimate the world’s land share under forests required to prevent dangerous climate change. For this, I combine newest longitudinal data of FLUXNET on forests’ net ecosystem exchange of carbon (NEE) from 78 forest sites (N = 607) with countries’ mean temperature and forest area. This straightforward approach indicates that the world’s forests sequester 8.3 GtCO2year−1. For the 2 °C climate target, the current forest land share has to be doubled to 60.0% to sequester an additional 7.8 GtCO2year−1, which demands less red meat consumption. This afforestation/reforestation (AR) challenge is achievable, as the estimated global biophysical potential of AR is 8.0 GtCO2year−1 safeguarding food supply for 10 billion people. Climate-responsible countries have the highest AR potential. For effective climate policies, knowledge on the major drivers of forest area is crucial. Enhancing information here, I analyze forest land share data of 98 countries from 1990 to 2015 applying causal inference (N = 2494). The results highlight that population growth, industrialization, and increasing temperature reduce forest land share, while more protected forest and economic growth generally increase it. In all, this study confirms the potential of AR for climate change mitigation with a straightforward approach based on the direct measurement of NEE. This might provide a more valid picture given the shortcomings of indirect carbon stock-based inventories. The analysis identifies future regional hotspots for the AR potential and informs the need for fast and forceful action to prevent dangerous climate change.

Keywords: Forest area; Climate change mitigation; Carbon sequestration; Net ecosystem exchange; Fixed effects panel regression; FLUXNET; FAO (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11027-019-09875-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:25:y:2020:i:4:d:10.1007_s11027-019-09875-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027

DOI: 10.1007/s11027-019-09875-4

Access Statistics for this article

Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon

More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:masfgc:v:25:y:2020:i:4:d:10.1007_s11027-019-09875-4