Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change
A. Koocheki (),
M. Nassiri Mahallati,
M. Bannayan and
F. Yaghoubi
Additional contact information
A. Koocheki: Ferdowsi University of Mashhad
M. Nassiri Mahallati: Ferdowsi University of Mashhad
M. Bannayan: Ferdowsi University of Mashhad
F. Yaghoubi: Ferdowsi University of Mashhad
Mitigation and Adaptation Strategies for Global Change, 2022, vol. 27, issue 4, No 1, 30 pages
Abstract:
Abstract Recognizing the climate change (CC) can have vast impacts on agricultural production has generated a desire to create resilience into cropping systems. Crop management is the most important strategy to improve crop yield and resilience under CC. This study investigated the adaptation (changing planting date and crop rotation) effects on rainfed wheat yield in Iran. A fallow-wheat rotation was simulated by the DSSAT model under the Representative Concentration Pathway (RCP)-4.5 and RCP-8.5 emission scenarios, for four time periods (1994–2018, 2032s (2020–2044), 2057s (2045–2069), and 2082s (2070–2094)) and an ensemble of five GCM models within the latest model based CMIP 5 for 16 representative sites within agro-climatic zones of the country. Results revealed that the magnitude and direction of CC impact and adaptation response varied spatially even within the agro-climatic zones. Under future CC, due to higher temperature and lower precipitation, wheat yield are projected to decrease depending on emission scenarios in all sites except Qorveh, Aligudarz, and Saqez. In general, greater rainfed wheat yield reduction is highly possible during the late twenty-first century and wheat yield will be more affected by CC under RCP-8.5. In the highlands of northwest Iran, rotation carryover effects and chickpea- and annual medic-wheat rotations can modulate the rainfed wheat yield response to CC, in 2032s and 2057s periods, with greater effects from annual medic. In lowland areas, replacing fallow with crop legumes was not sufficient to avoid wheat yield losses. When planting dates were adapted, wheat yield improved across a large number of locations under all wheat-based crop rotations. In general, crop rotation can be considered as an essential component of risk reduction strategies for CC adaptation and yield resilience especially in areas where crop rotations better represent predominant cropping systems.
Keywords: Adaptation; Agro-climatic zone; Crop rotation; Crop modeling; Planting date (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11027-022-09996-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:27:y:2022:i:4:d:10.1007_s11027-022-09996-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
DOI: 10.1007/s11027-022-09996-3
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().