Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China
Xu Wang () and
Pallav Purohit
Additional contact information
Xu Wang: Beijing University of Technology
Pallav Purohit: International Institute for Applied Systems Analysis (IIASA)
Mitigation and Adaptation Strategies for Global Change, 2022, vol. 27, issue 7, No 3, 28 pages
Abstract:
Abstract The electricity demand for space cooling in the non-residential building (NRB) sector of China is growing significantly and is becoming increasingly critical with rapid economic development and mounting impacts of climate change. The growing demand for space cooling will increase global warming due to emissions of hydrofluorocarbons used in cooling equipment and carbon dioxide emissions from the mostly fossil fuel-based electricity currently powering space cooling. This study uses the Greenhouse Gas and Air Pollution Interaction and Synergies (GAINS) model framework to estimate current and future emissions of hydrofluorocarbons and their abatement potentials for space cooling in the NRB sector of China and assess the co-benefits in the form of savings in electricity and associated reductions in greenhouse gas (GHG), air pollution, and short-lived climate pollutant emissions. Co-benefits of space cooling are assessed by taking into account (a) regional and urban/rural heterogeneities and climatic zones among different provinces; (b) technical/economic energy efficiency improvements of the cooling technologies; and (c) transition towards lower global warming potential (GWP) refrigerants under the Kigali Amendment. Under the business-as-usual (BAU) scenario, the total energy consumption for space cooling in the NRB sector will increase from 166 TWh in 2015 to 564 TWh in 2050, primarily due to the rapid increase in the floor space area of non-residential buildings. The total GHG mitigation potential due to the transition towards low-GWP refrigerants and technical energy efficiency improvement of cooling technologies will approximately be equal to 10% of the total carbon emissions from the building sector of China in 2050.
Keywords: Hydrofluorocarbons; Low-GWP alternatives; Energy efficiency; Commercial air-conditioning; Kigali amendment; Co-benefits (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11027-022-10021-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:27:y:2022:i:7:d:10.1007_s11027-022-10021-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027
DOI: 10.1007/s11027-022-10021-w
Access Statistics for this article
Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon
More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().