EconPapers    
Economics at your fingertips  
 

Determining our climate policy future: expert opinions about negative emissions and solar radiation management pathways

Benjamin K. Sovacool (), Chad Baum () and Sean Low
Additional contact information
Benjamin K. Sovacool: Aarhus University
Sean Low: Aarhus University

Mitigation and Adaptation Strategies for Global Change, 2022, vol. 27, issue 8, No 10, 50 pages

Abstract: Abstract Negative emissions technologies and solar radiation management techniques could contribute towards climate stability, either by removing carbon dioxide from the atmosphere and storing it permanently or reflecting sunlight away from the atmosphere. Despite concerns about them, such options are increasingly being discussed as crucial complements to traditional climate change mitigation and adaptation. Expectations around negative emissions and solar radiation management and their associated risks and costs shape public and private discussions of how society deals with the climate crisis. In this study, we rely on a large expert survey (N = 74) to critically examine the future potential of both negative emission options (e.g., carbon dioxide removal) and solar radiation management techniques. We designed a survey process that asked a pool of prominent experts questions about (i) the necessity of adopting negative emissions or solar radiation management options, (ii) the desirability of such options when ranked against each other, (iii) estimations of future efficacy in terms of temperature reductions achieved or gigatons of carbon removed, (iv) expectations about future scaling, commercialization, and deployment targets, and (v) potential risks and barriers. Unlike other elicitation processes where experts are more positive or have high expectations about novel options, our results are more critical and cautionary. We find that some options (notably afforestation and reforestation, ecosystem restoration, and soil carbon sequestration) are envisioned frequently as necessary, desirable, feasible, and affordable, with minimal risks and barriers (compared to other options). This contrasts with other options envisaged as unnecessary risky or costly, notably ocean alkalization or fertilization, space-based reflectors, high-altitude sunshades, and albedo management via clouds. Moreover, only the options of afforestation and reforestation and soil carbon sequestration are expected to be widely deployed before 2035, which raise very real concerns about climate and energy policy in the near- to mid-term.

Keywords: Expert survey; Climate engineering; Carbon dioxide removal; Negative emissions technologies; Solar radiation management; Greenhouse gas removal (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11027-022-10030-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:27:y:2022:i:8:d:10.1007_s11027-022-10030-9

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027

DOI: 10.1007/s11027-022-10030-9

Access Statistics for this article

Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon

More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:masfgc:v:27:y:2022:i:8:d:10.1007_s11027-022-10030-9