EconPapers    
Economics at your fingertips  
 

Land-neutral negative emissions through biochar-based fertilization—assessing global potentials under varied management and pyrolysis conditions

Constanze Werner (), Wolfgang Lucht, Claudia Kammann and Johanna Braun
Additional contact information
Constanze Werner: Member of the Leibniz Association
Wolfgang Lucht: Member of the Leibniz Association
Claudia Kammann: Hochschule Geisenheim University
Johanna Braun: Member of the Leibniz Association

Mitigation and Adaptation Strategies for Global Change, 2024, vol. 29, issue 5, No 3, 28 pages

Abstract: Abstract Climate stabilization is crucial for restabilizing the Earth system but should not undermine biosphere integrity, a second pillar of Earth system functioning. This is of particular concern if it is to be achieved through biomass-based negative emission (NE) technologies that compete for land with food production and ecosystem protection. We assess the NE contribution of land- and calorie-neutral pyrogenic carbon capture and storage (LCN-PyCCS) facilitated by biochar-based fertilization, which sequesters carbon and reduces land demand by increasing crop yields. Applying the global biosphere model LPJmL with an enhanced representation of fast-growing species for PyCCS feedstock production, we calculated a land-neutral global NE potential of 0.20–1.10 GtCO2 year−1 assuming 74% of the biochar carbon remaining in the soil after 100 years (for + 10% yield increase; no potential for + 5%; 0.61–1.88 GtCO2 year−1 for + 15%). The potential is primarily driven by the achievable yield increase and the management intensity of the biomass producing systems. NE production is estimated to be enhanced by + 200–270% if management intensity increases from a marginal to a moderate level. Furthermore, our results show sensitivity to process-specific biochar yields and carbon contents, producing a difference of + 40–75% between conservative assumptions and an optimized setting. Despite these challenges for making world-wide assumptions on LCN-PyCCS systems in modeling, our findings point to discrepancies between the large NE volumes calculated in demand-driven and economically optimized mitigation scenarios and the potentials from analyses focusing on supply-driven approaches that meet environmental and socioeconomic preconditions as delivered by LCN-PyCCS.

Keywords: Carbon dioxide removal; Negative emissions; Biochar; Pyrolysis; PyCCS (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11027-024-10130-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:masfgc:v:29:y:2024:i:5:d:10.1007_s11027-024-10130-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11027

DOI: 10.1007/s11027-024-10130-8

Access Statistics for this article

Mitigation and Adaptation Strategies for Global Change is currently edited by Robert Dixon

More articles in Mitigation and Adaptation Strategies for Global Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:masfgc:v:29:y:2024:i:5:d:10.1007_s11027-024-10130-8