On the relationship between the value function and the efficient frontier of a mixed integer linear optimization problem
Samira Fallah (),
Ted K. Ralphs () and
Natashia L. Boland ()
Additional contact information
Samira Fallah: Lehigh University
Ted K. Ralphs: Lehigh University
Natashia L. Boland: Curtin University
Mathematical Methods of Operations Research, 2024, vol. 100, issue 1, No 8, 175-220
Abstract:
Abstract In this study, we investigate the connection between the efficient frontier (EF) of a general multiobjective mixed integer linear optimization problem (MILP) and the so-called restricted value function (RVF) of a closely related single-objective MILP. In the first part of the paper, we detail the mathematical structure of the RVF, including characterizing the set of points at which it is differentiable, the gradients at such points, and the subdifferential at all nondifferentiable points. We then show that the EF of the multiobjective MILP is comprised of points on the boundary of the epigraph of the RVF and that any description of the EF suffices to describe the RVF and vice versa. Because of the close relationship of the RVF to the EF, we observe that methods for constructing the so-called value function (VF) of an MILP and methods for constructing the EF of a multiobjective optimization problem are effectively interchangeable. Exploiting this observation, we propose a generalized cutting-plane algorithm for constructing the EF of a multiobjective MILP that arises from an existing algorithm for constructing the classical MILP VF. The algorithm identifies the set of all integer parts of solutions on the EF. We prove that the algorithm converges finitely under a standard boundedness assumption and comes with a performance guarantee if terminated early.
Keywords: Value function; Efficient frontier; Cutting-plane algorithm; Multiobjective optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s00186-024-00871-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-024-00871-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-024-00871-2
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().