Multi-stage distributionally robust convex stochastic optimization with Bayesian-type ambiguity sets
Wentao Ma () and
Zhiping Chen ()
Additional contact information
Wentao Ma: Xi’an Jiaotong University
Zhiping Chen: Xi’an Jiaotong University
Mathematical Methods of Operations Research, 2024, vol. 100, issue 2, No 6, 553-600
Abstract:
Abstract The existent methods for constructing ambiguity sets in distributionally robust optimization often suffer from over-conservativeness and inefficient utilization of available data. To address these limitations and to practically solve multi-stage distributionally robust optimization (MDRO), we propose a data-driven Bayesian-type approach that constructs the ambiguity set of possible distributions from a Bayesian perspective. We demonstrate that our Bayesian-type MDRO problem can be reformulated as a risk-averse multi-stage stochastic programming problem and subsequently investigate its theoretical properties such as consistency, finite sample guarantee, and statistical robustness. Moreover, the reformulation enables us to employ cutting planes algorithms in dynamic settings to solve the Bayesian-type MDRO problem. To illustrate the practicality and advantages of the proposed model and algorithm, we apply it to a distributionally robust inventory control problem and a distributionally robust hydrothermal scheduling problem, and compare it with usual formulations and solution methods to highlight the superior performance of our approach.
Keywords: Multi-stage distributionally robust optimization; Data-driven optimization; Ambiguity set; Bayesian confidence region; Consistency; Cutting plane (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00186-024-00872-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:100:y:2024:i:2:d:10.1007_s00186-024-00872-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/s00186-024-00872-1
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().