Test sets of integer programs
Robert Weismantel ()
Mathematical Methods of Operations Research, 1998, vol. 47, issue 1, 37 pages
Abstract:
This article is a survey about recent developments in the area of test sets of families of linear integer programs. Test sets are finite subsets of the integer lattice that allow to improve any given feasible non-optimal point of an integer program by one element in the set. There are various possible ways of defining test sets depending on the view that one takes: theGraver test set is naturally derived from a study of the integral vectors in cones; theScarf test set (neighbors of the origin) is strongly connected to the study of lattice point free convex bodies; the so-calledreduced Gröbner basis of an integer program is obtained from a study of generators of polynomial ideals. This explains why the study of test sets connects various branches of mathematics. We introduce in this paper these three kinds of test sets and discuss relations between them. We also illustrate on various examples such as the minimum cost flow problem, the knapsack problem and the matroid optimization problem how these test sets may be interpreted combinatorially. From the viewpoint of integer programming a major interest in test sets is their relation to the augmentation problem. This is discussed here in detail. In particular, we derive a complexity result of the augmentation problem, we discuss an algorithm for solving the augmentation problem by computing the Graver test set and show that, in the special case of an integer knapsack problem with 3 coefficients, the augmentation problem can be solved in polynomial time. Copyright Physica-Verlag 1998
Keywords: Integer programming; test set; Graver test set; Hilbert basis; neighbors of the origin; Gröbner basis; augmentation problem; knapsack problem (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/BF01193834 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:47:y:1998:i:1:p:1-37
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186
DOI: 10.1007/BF01193834
Access Statistics for this article
Mathematical Methods of Operations Research is currently edited by Oliver Stein
More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().