EconPapers    
Economics at your fingertips  
 

A new strong optimality criterion for nonstationary Markov decision processes

Xianping Guo, Peng Shi and Weiping Zhu

Mathematical Methods of Operations Research, 2000, vol. 52, issue 2, 287-306

Abstract: This paper deals with a new optimality criterion consisting of the usual three average criteria and the canonical triplet (totally so-called strong average-canonical optimality criterion) and introduces the concept of a strong average-canonical policy for nonstationary Markov decision processes, which is an extension of the canonical policies of Herna´ndez-Lerma and Lasserre [16] (pages: 77) for the stationary Markov controlled processes. For the case of possibly non-uniformly bounded rewards and denumerable state space, we first construct, under some conditions, a solution to the optimality equations (OEs), and then prove that the Markov policies obtained from the OEs are not only optimal for the three average criteria but also optimal for all finite horizon criteria with a sequence of additional functions as their terminal rewards (i.e. strong average-canonical optimal). Also, some properties of optimal policies and optimal average value convergence are discussed. Moreover, the error bound in average reward between a rolling horizon policy and a strong average-canonical optimal policy is provided, and then a rolling horizon algorithm for computing strong average ε(>0)-optimal Markov policies is given. Copyright Springer-Verlag Berlin Heidelberg 2000

Keywords: Key words: Nonstationary Markov decision processes; optimality equations; strong average-canonical optimal policies (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s001860000076 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:52:y:2000:i:2:p:287-306

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s001860000076

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:52:y:2000:i:2:p:287-306