EconPapers    
Economics at your fingertips  
 

Numerical evaluation of resolvents and Laplace transforms of Markov processes using linear programming

Kurt Helmes and Richard H. Stockbridge

Mathematical Methods of Operations Research, 2001, vol. 53, issue 2, 309-331

Abstract: This paper uses linear programming to numerically evaluate the Laplace transform of the exit time distribution and the resolvent of the moments of various Markov processes in bounded regions. The linear programming formulation is developed from a martingale characterization of the processes and the use of occupation measures. The LP approach naturally provides both upper and lower bounds on the quantities of interest. The processes analyzed include the Poisson process, one-dimensional Brownian motion (with and without drift), an Ornstein-Uhlenbeck process and two-dimensional Brownian motion. The Laplace transform of the original Cameron-Martin formula is also numerically evaluated by reducing it to the analysis of an Ornstein-Uhlenbeck process. Copyright Springer-Verlag Berlin Heidelberg 2001

Keywords: Key words: Markov processes; Laplace transforms; resolvents; linear programming; Hausdorff moment conditions; Brownian motion; Ornstein-Uhlenbeck process; Cameron-Martin formula; AMS(MOS) subject classifications. 60G40; 60K99; 65N20; 90C05; 90C50; 93E25. (search for similar items in EconPapers)
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s001860100121 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:mathme:v:53:y:2001:i:2:p:309-331

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/00186

DOI: 10.1007/s001860100121

Access Statistics for this article

Mathematical Methods of Operations Research is currently edited by Oliver Stein

More articles in Mathematical Methods of Operations Research from Springer, Gesellschaft für Operations Research (GOR), Nederlands Genootschap voor Besliskunde (NGB)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:mathme:v:53:y:2001:i:2:p:309-331